Programming the ROBO TX
Controller

Part 2: Windows Library "ftMscLib"

Library V1.5.11 dated 2/19/2012

(document version = library version)

References:
Description Version Date
ROBO TX Controller firmware 1.30 3/19/2012
ROBO Pro 3.1.3 3/26/2012
"PC_Programming_RoboTXC" package 1.5 4/24/2012

MSC Vertriebs GmbH
Design Center Aachen
Pascalstr. 21
52076 Aachen, Germany

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

Contents

1 General information - transfer @reaouuuii i 5

2 General functions of the "ftMscLib" librarycoovevviiiiiiiii e e 7
D R 1 o€l o) V=T To o PSP 7
2.2 fEXGEILIDVEISIONSEE . .ceiieeei et ean 7
728G T 1 4 a1 o] o P 7
B 1 0 ® 01T o PSP 8
8 R 1 w4 £ I) o T 8
2.6 fIXOPENCOMDEVICENT ...cvvvuiiiiiiriis i e errs s e e s e s e e s s s s s e e ana e s e rnnnasas 8
2.7 fEXOPENCOMDEVICE ..uiiiiruiiiiecrriiie ettt s s ere s e e r e e s s e s e e s e e s e s e e eaa e e e e raae e s eennanas 9
2.8 fEXCIOSEDEVICE . ivuniiiiiiieiti ettt s e e s e et e s e e e e e s e e e e e e e e ea e eaan 9
2.9 fEXCIOSEAIIDEVICEScevuiiireiiiiiii e e e e e e s r s s e e e s e aa e e ea s e ran e e enas 9
2.10 fIXISHANAIEVaAlid.........cceuvuiiiiiiie e 10
2.11 GEtCOMSEAtUS. . i tui it ean 10
2.12 GetAvailableComPOIScuuiiiiiieie e 10
2.13 ENUMCOMPOIS . cvuiiiiiieiiee s s ere e s e e e e e ae s s e e s e e s s e s s e rn e s e rn e s ennnsernnnaens 11
2.14 fIXGEtLIDEITOrSEING ..uiiiiieiii i eere e s s e e e e e e anaas 11
2.15 fEIXGetMaNUfaCtUrerStrg i e e 12
2.16 fIXGEtShOMNAMESEIG ... e e e e e e eeene 12
2.17 fIXGEtLONGNAMESEIG .. .ccvuiiiiiiiiie e e e e e e raaa 12
2.18 fIXGEtFIrMWAIrESEIG ... i iiirei i e e r e erraaas 13
B R (€= T g 1) o PP 13
2.20 GEtRODOTXDEVNAME ...uuiiiriiiiiiiii it e et e e et st e e s e e s s e ae s e ra e s e s s s eaae s e aan s s ennnens 13
2.21 SetRODOTXDEVNAME ...uuiiiiiiiiiiiieiiie s e et s e s s s s e s e e s e eaa s e ea e e e ran s s ennnaees 14
W €1 3 (o) oo 41 2 o 14
2.23 GELRODOTXFWSET ..iuii et it r s e e r e e e s s e e s e raa e s eanaees 15
2.24 GEetRODOTXFWVaAL....iiieiiiiiiiiiiie et re e s e e s ene s e e e s e rnn s e ennaens 15
2.25 GELRODOTXHWSEE ..uiiiitiiiii et e e ere e e e e e eaa s e ea e s e e s e ea e e eaa e s eann e ennnnnes 15
2.26 GEtRODOTXSEIIAISE . .cvuiiii i e e e ees 16
2.27 GEtRODOTXDIISLE .evuieetii e ce e s e s e s e eae s e e e s e rn s s rnn e s e rneeennaennn 16

3 0nline MOde fUNCHIONS. ... iiiiiiiii it e s e e s e e s e eaa e ee 17
3.1 fEXSEArTranSfErAr . .. e ciee e 17
3.2 FEXSLOPTIANSFEIAIEA ...t e e e e e e e e e e e e e e nne e e e e e e eeennnns 17
3.3 EXISTraNSIEIrACHV ...t e 17
3.4 GetTransferAreasArrayAddrcoivierue i e e aaaa 18
3.5 GetTransferAreaStatUSAAArccuiiiiii i e e e e aa e 18
3.6 StartCounterReSel......cc i 19
3.7 SetCBCoUNterRESEItEduiiieiiiiiiiiei e e e e s r e eaaaees 19
3.8 SEtOULMOLOIVAIUESuiieeiiiiiiiieiii e e e ea e e e e e e e ea e e e e s e eaaaees 19
3.9 SetOUtPWMVAIUES.....ccuiiii i r e e ra e 20
T Y= 0 110 o o PP 20
3.11 SetFtCNECONTIG. . iiiri e 21
3.12 SetFtMOtOrCONFIG cuuuiiriiiii i e ee 21
3.13 StartMOLOrEXCMIA ... iceii i iei e er e e s e s s e e s e ra s e eae s e rn e s ennnaens 22
T S o o1 o] 0] f bt 1 4o [PP 22

MSC Vertriebs GmbH Page 2 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

3.15 SOPAIIMOLOrEXCMA. .. .iiierieiiieiiee s eeri s s e r s s e e s s e rne s e e ran e e e ennaas 23
3.16 SetCBMOtOrEXREAChEdccvvuiiiii i 23
I I 1< {9} [)Y = | [=R 23
3.18 GetINCoUNterValUe.......ccuuuiiiiiiiiie e e e s s rne s e e rrn e s e ranaas 24
3.19 GetInDisplayButtonValUueoiveuiiiiiiii e er s e r s e e e aa e ee 24
I 0 I v 2 (= 3 T {013 o PSR 25
3.21 RTXCIEANDISK. . .iietuuiiiietriieieerstissssersassssrass s s s sss s s s s rsse s s s enss s s e srsseessennnneasennnnns 25
3.22 GetRODOTXMEMLAYOUL ...ceuuiiiriiieiii e ire e e e e e e e e e r s e e e s e ra s e ennaens 26
3.23 SetCBRODOEXISIALEuiiieeiiiiiiee e e e e e e e e e ea e s e e e e eaneees 26
3.24 SEtRODOTXMESSAGE .. cuuuiiiuiiiiuiie it e ei e s ere et e s e s e s s ea e s e ra e s eae s s ea e s enaseennnanes 27
4 Functions for uploading data..........ccoeeeemmiiir e 28
L R o o 111 o] = T PP 28
4.2 FRamMFIleUPIOad.......cooceuiiiii i 28
TG TN o o Yo) Y6 T = | o PP 29
5 Program control fUNCIONS.ccuuiiiiiiiiiii e e e s e e e e e eaa e e eens 30
5.1 FProgramRUNiiiiii it e 30
5.2 FPrOgramSlOp. ... i 30
6 Bluetooth Message APT fUNCHIONSoooiiiiiiriii e e e e e 31
6.1 INErodUCKION ...ueiieii e 31
6.2 On-call duty and receive ready StatusS........ccooeeuiiiiiiiiiii e 31
6.3 LoOPbACK fUNCHIONiiiiirc e e e e 32
6.4 StartSCANBIDEVICE. ...t 32
6.5 CanCelISCANBIDEAVICEuiiiriiiiiii it e e e e ra e aa e 34
6.6 CONNECIBLAAAIESS . .uuiiiiriiiieeite st s e e s s rr e e e rnnaes 35
6.7 BELISEENCONON .. ceeiii i e ra e 37
LS T = o B T 0o T 5 R 39
6.9 DiSCONNECEBLcveiiiiiiii i e e ras 40
6.10 SENABIMESSAGE ..ceuuiiriiiiitiiiiiie et r it e e s s e s s s e e s e r e e e raaaee 41
6.11 BEREAAMSGON.....ccieeiieeie e eeeeeerite eernnnn e e e e e eeeennnnnnn 42
6.12 BtREAAMSGOST.....ceveeeiiiiiiiie e 43
6.13 StatusBtCONNECHIONiiee i e r e e s e e e s e rn e e rnnaees 44
6.14 List of status codes in the callback functions..........ccovveviiiiiiiiii e, 45
6.15 Status indicator in the transfer areaccoeeeiiiiiiiii i 46
P2 O =) 8 VT Vot o) Y-SR 47
2% S U1 (o T [1 T u T o I PRSP 47
7.2 fEXI2CREAA.....u i iiiiiie et 47
286 T 1 w4 7o\ 5 N 48
7.4 Error codes of I°C API functions (errCode O Status)........cceeeerverrrrrssreesresssessseesns 50
= o] gl o0 [51
Memory layout Of transfer @rea.......coiviiuiiiiiiiiiii e 53
9.1 FT_VERSION SErUCEUIE . ivuieiiiiiriii e e rer s ssnsen s s sasenrea s sasansensenssanssnsensensennsnnse 53
1S T8 17 N 1 1O 2= 1 [1 53
9.3 BT_STATUS SErUCEUIE .. ccvn it r s s e s s e r e ea s e rn e enas 54
1o T I N O I S I = B (o o B 55

MSC Vertriebs GmbH Page 3 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

9.5 TA_CONFIG SErUCEUIE ..uuitii it ee s e e s e s e s ea s ra s e s e r e e an s e s e enns 56
Lo TN S N U I o Tt P 57
1 IR N O 10 I I = I o Tt 58
0.8 TA_DISPLAY StrUCEUN .. ivitiitieeirii vt e st s s s e earan s e saranrea s ea s e s e s earennsenrenns 59
0.9 TA_STATUS SErUCKUIE ettt e a e r e s e e enns 60
9.10 TA_CHANGE StrUCKUIE .uuivve v veer i r e ress s s s e s rn s e s san s e s e e ra s s s e s eareansenreans 61
1o T I O I N I 1 = 2 T 1 = 61
10 Document change RiSLOrYcooiiiiiiiiiiie e e e e e e e ennnas 62

MSC Vertriebs GmbH Page 4 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

1 General information - transfer area

As with the previous FtLib library by Knobloch and the previous ROBO Interface, what is
called a transfer area is used to control the ROBO TX Controller. The output and input
values are set or read out in this transfer area. Then a communication thread synchronizes
the values with the ROBO TX Controller or updates the values received from the ROBO TX
Controller in the transfer area. The ftMscLib library manages this transfer area as well as
the configuration of the communication thread. As an API, the library provides a set of
functions, each of which sets the output and configuration values in the transfer area or
reads out the currently existing input values of the ROBO TX Controller.

Structure of the new transfer area in the ftMscLib and firmware:

Adr. 0

TA_INFO
(64 bytes)

64
TA_STATE
(36 bytes)

100

TA_CONFIG
(88 bytes)

188
TA_INPUT

(44 bytes)

232 TA_OUTPUT
(36 bytes)

268
TA_DISPLAY

(76 bytes)

344 reserved
(4 bytes)

348 TA_CHANGE
(8 bytes)

356 TA_TIMER
(12 bytes)

368
reserved

(28 bytes)

396 HOOK_TABLE
(8 bytes)

404
reserved

(108 bytes)

512
Version V1.04.19 (2009/09/01)

Chapter 9 describes the memory layout structure in more detail.

MSC Vertriebs GmbH Page 5 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

To control larger models, it may be necessary to connect multiple ROBO TX Controllers.
This is done via the integrated "extension ports" through a master/slave structure. In a
chain of connected controllers, there is always one master and up to 8 slaves, which are
controlled remotely by the master.

Each ROBO TX Controller has 2 extension ports that represent a serial expansion bus. A
connection is made from one controller to the adjacent controller using a 6-pin ribbon
cable. A data connection is thus made from the master to each of the slaves.

The expansion bus is an RS-485 interface with taps on each controller. The expansion bus
is through-connected between the two connections on the controller, providing for simple
wiring of adjacent controllers.

Communication on the expansion bus is also master/slave oriented. The master polls all
connected slaves (extension controllers) cyclically and exchanges I/O information.

To do this, the memory of each controller contains a set of 9 transfer areas, a master and
8 slaves. Its own transfer area is always a master and is at the beginning of the occupied
memory area. The slaves are controlled by the master in online mode in the same way as
if controlling a single controller from a PC in online mode. The controller which is declared
the master is then the only one that can communicate with the PC. Requests from the PC
to a slave in online mode are routed by the master over the relevant transfer area and
then over the expansion bus to the respective slave controller.

For many function calls, the result is that a unique controller ID must be provided so that
the particular request reaches the right controller via the associated transfer area on the
master controller.

To give a controller a unique address, the following definitions (controller IDs) need to
have been set:
(from ROBO_TX_FW.h)

enum ta_id_e

{
TA LOCAL = O, // Transfer Area Master Controller
TA EXT 1, // Transfer Area Extension 1 Controller
TA EXT 2, // Transfer Area Extension 2 Controller
TA EXT_3, // Transfer Area Extension 3 Controller
TA EXT 4, // Transfer Area Extension 4 Controller
TA EXT_5, // Transfer Area Extension 5 Controller
TA EXT_6, // Transfer Area Extension 6 Controller
TA EXT 7, // Transfer Area Extension 7 Controller
TA EXT_8, // Transfer Area Extension 8 Controller
TA_COUNT // Number of Transfer Areas in array = 9
}:

MSC Vertriebs GmbH Page 6 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

2 General functions of the "ftMscLib" library

2.1 ftxGetLibVersion

DWORD ftxGetLibVersion (void)
Version number of the current library as DWORD value (4 byte), format: 3.2.1.0

Byte3: 0

Byte 2: Main version
Byte 1: Release version
Byte 0: Sub-version

2.2 ftxGetLibVersionStr

DWORD fixGetLibVersionStr (LPSTR strBuff,
DWORD maxLen)

The version number of the library is returned as a string.
Format "MM.RR.SS yyyy/mm/dd"
MM = main version, RR = release version, SS = sub-version, yyyy/mm/dd = date

Call: LPSTR strBuff - string buffer pointer for receiving the version string
DWORD maxLen - reserved length of string buffer
Return: DWORD len - length of version string or 0

2.3 ftxInitLib

DWORD fixinitLib (void)

Library initialization function. To use the library functionality, this function must first be
called. Logging is prepared for this; the internal variables and the FishX1 transfer area are
initialized.

Return: DWORD errCode - error code (ftErrCode.h)
FTLIB_ERR_SUCCESS - no error
FTLIB_ERR_LIB_IS_INITIALIZED - library is already initialized
FTLIB_ERR_NO_MEMORY - N0 memory

MSC Vertriebs GmbH Page 7 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

2.4 ftxCloselLib

DWORD ftxCloselLib (void)
Counterpart to InitFtLib() function; frees up the reserved memory again. Closes the library.
Return: DWORD errCode - error code (ftErrCode.h)

FTLIB_ERR_SUCCESS - No error

2.5 ftxIsLiblnit

DWORD fixIsLibInit (void)

Provides information on whether the ftMscLib library is initialized.

Return: DWORD errCode - error code (ftErrCode.h)
FTLIB_ERR_SUCCESS - NO error
FTLIB_ERR_LIB_IS_INITIALIZED - library is initialized
FTLIB_ERR_LIB_IS_NOT_INITIALIZED - library is not initialized

2.6 ftxOpenComDeviceNr

HANDLE ftxOpenCombDeviceNr (DWORD port,
DWORD baudr,
DWORD *errcode)

The function opens for communication with the ROBO TX Controller with a COM interface
specified with a number and returns a unique handle. Possible values for a COM interface: 1
to 255. The available port numbers come from the list in the Device Manager. The errcode
variable is used for receiving a possible error code.

Call: DWORD port - port number of COM interface, e.g. 12 for COM12
DWORD baudr - baud rate, current 38400 fixed
DWORD *errcode - pointer to an error variable

Return: HANDLE fthdl - handle for communication with the ROBO TX Controller; if

an error occurs (=NULL), then the errcode variable
contains a possible error code.

Possible error code (ftErrCode.h)

FTLIB_ERR_SUCCESS - no error (handle '= NULL)
FTLIB_ERR_DEVICE_IS_OPEN - COM is already open
FTLIB_ERR_SOME_DEVICES_ARE_OPEN - a different COM is open
FTLIB_ERR_OPEN_COM - error opening a COM

MSC Vertriebs GmbH Page 8 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

2.7 ftxOpenComDevice

HANDLE ftxOpenCombDevice (char *comStr,
DWORD baudr,
DWORD*errcode)

Function equivalent to function from 2.6, but the particular COM interface can be passed as
a string, e.g. "COM4" or "COM32".

Call: char comStr - COM interface with port number as string, e.g. "COM4"
DWORD baudr - baud rate, current 38400 fixed
DWORD *errcode - pointer to an error variable

Return: see 2.6

2.8 ftxCloseDevice

DWORD ftxCloseDevice (HANDLE fthd)

The function closes an open connection to the specified ROBO TX Controller. All active
threads for communication with the ROBO TX Controller are stopped.

Call: HANDLE fthdl - valid handle of a COM interface

Return: DWORD errCode - FTLIB_ERR_SUCCESS (no error) or error code

2.9 ftxCloseAllDevices

DWORD ftxCloseAllDevices (void)

Function closes all open connections to all possible ROBO TX Controllers. Currently supports
only one connection to a ROBO TX Controller. When the function is called, the only existing
connection is closed.

Return: DWORD errCode - FTLIB_ERR_SUCCESS (no error) or error code

MSC Vertriebs GmbH Page 9 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

2.10 ftxlsHandleValid

DWORD ftxIsHandleValid (HANDLE fthdl)

Checks whether the specified handle of a COM interface is (still) valid.

Call: HANDLE fthdl - valid handle of a COM interface
Return: DWORD errCode - error code (ftErrCode.h)
FTLIB_ERR_SUCCESS - handle is valid, no error
FTLIB_ERR_DEVICE_NOT_OPEN - no COM is open
FTLIB_ERR_UNKNOWN_DEVICE_HANDLE - the specified handle is invalid or
unknown

2.11 GetComStatus

DWORD GetComStatus — (HANDLE fthd)

Same functionality as the function "ftxIsHandleValid()"; see 2.10.

2.12 GetAvailableComPorts

DWORD GetAvailableComPorts (int selectMode)

Function finds all available COM ports based on information in the Windows Registry and
returns the number of ports. This information is managed internally in a static list for further
use. To find and display the available COM ports, this function must be called first.

Call: int selectMode - information on whether all COM ports are read or only the
ports that are intended for connection with a ROBO TX
Controller (USB or Bluetooth)
ALL_PORTS 0 all ports
USB_ONLY 1 USB ports only
BT_ONLY 2 Bluetooth connections only

Return: DWORD iComPorts - number of COM ports found in the internal list

MSC Vertriebs GmbH Page 10 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

2.13 EnumComPorts

DWORD EnumComPorts (DWORD idx,
LPSTR comstr,
DWORD maxlen)

Provides an entry from the static list created by the library which contains the available COM
ports. The function "GetAvailableComPorts()" must have been called previously. The entry is
returned as a string with information on the COM port and a description of its use, as taken
from the Windows Registry, e.g.: "COM32 (fischertechnik USB ROBO TX Controller)". The
passed string buffer must be dimensioned accordingly so that it can receive the string with
the description.

Call: DWORD idx - list index within the list of available COM ports
0 < idx < iComPorts (GetAvailableComPorts())
LPSTR comstr - string buffer for receiving the COM description
DWORD maxLen - max. length of string buffer
Return: DWORD index - index of the list entry which was read (= idx); in the event
of an error, the value FTLIB_ERR_INVALID_PARAM is
returned

2.14 ftxGetLibErrorString

DWORD ftxGetLibErrorString (DWORD errCode,
DWORD typ,
LPSTR strBuff,
DWORD maxLen)

Function returns either a representative error message using the passed error code or the
error constant itself as a string. No error analysis can be made as a result, even if the error
code is unknown.

Call: DWORD errCode - error code
DWORD typ - type of the returned string
0 = error constant as string
1 = error text in English

LPSTR strBuff - buffer for receiving the error message (null-term. string)
DWORD maxLen - length of the recording buffer
Return: DWORD len - length of the copied error message or 0

MSC Vertriebs GmbH Page 11 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

2.15 ftxGetManufacturerStrg

DWORD ftxGetManufacturerStrg (HANDLE fthdl,
LPSTR strBuff,
DWORD maxien)

The function returns a null-terminated string with information on the manufacturer, currently
still static "MSC Vertriebs GmbH".

Note: This information is currently not yet read out of the ROBO TX Controller.

Call: HANDLE fthdl - current handle of the ROBO TX Controller
LPSTR strBuff - string buffer for receiving the manufacturer
information
DWORD maxlen - available length of strBuff
Return: DWORD len - length of the copied string of characters, if error = 0

2.16 ftxGetShortNameStrg

WORD ftxGetShortNameStrg (HANDLE fthdl,
LPSTR strBuff,
DWORD maxien)

The function provides a null-terminated string with the official description "ROBO TX
Controller".

Note: This information is currently not yet read out of the ROBO TX Controller.

Call: HANDLE fthdl - current handle of the ROBO TX Controller
LPSTR strBuff - string buffer for receiving the string of characters
DWORD maxlen - available length of strBuff

Return: DWORD len - length of the copied string of characters, if error = 0

2.17 ftxGetLongNameStrg

DWORD ftxGetLongNameStrg (HANDLE fthdl,
LPSTR strBuff,
DWORD maxien)

Calls the function "GetFtShortNameStrg()"; for parameter description, see 2.16

MSC Vertriebs GmbH Page 12 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

2.18 ftxGetFirmwareStrg

DWORD ftxGetFirmwareStrg (HANDLE fthdl,
LPSTR strBuff,
DWORD maxien)

The function returns a null-terminated string with the firmware installed on the ROBO TX
Controller. Format: 'V xx.yy' .

Call: HANDLE fthdl - current handle of the ROBO TX Controller
LPSTR strBuff - string buffer for receiving the string of characters
DWORD maxlen - available length of strBuff

Return: DWORD len - length of the copied string of characters, if error = 0

2.19 ftxGetSerialNrStrg

WORD ftxGetSerialNrStrg (HANDLE fthdl,
LPSTR strBuff,
DWORD maxien)

The function returns a null-terminated string with the serial number of the connected ROBO
TX Controller.

Call: HANDLE fthdl - current handle of the ROBO TX Controller
LPSTR strBuff - string buffer for receiving the string of characters
DWORD maxlen - available length of strBuff

Return: DWORD len - length of the copied string of characters, if error = 0

2.20 GetRoboTxDevName

DWORD GetRoboTxDevName (HANDLE fthdl,
int devld,
LPSTR strBuff,
DWORD /len)

The function returns a null-terminated string with the name of the specified ROBO TX
Controller. The function copies the result into the strBuff string buffer, which must be
dimensioned accordingly. The max. length of the name is 16 characters. By default, the
name of the ROBO TX Controller is made up of the string "ROBO TX-" and a 3-digit nhumber
"xxx". The number assigned is the checksum of the given Bluetooth address as a decimal
number.

Example: From the existing Bluetooth address of the controller, "00:13:7B:B2:16" the result
is the checksum "1A8" (hex), which corresponds to "424" (decimal). The name of the
present ROBO TX Controller is therefore "ROBO TX-424", which appears by default on the
display of the controller.

MSC Vertriebs GmbH Page 13 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

Call: HANDLE fthdl - current handle of the ROBO TX Controller
int devld - controller ID (master or extension controller)
LPSTR strBuff - string buffer for receiving the controller name
DWORD len - max. length of passed string buffer strBuff

Return: DWORD len - length of the copied string of characters, if error = 0

2.21 SetRoboTxDevName

DWORD SetRoboTxDevName (HANDLE fthdl,
int devld,
LPSTR strBuff)

Use this function to change the default name given to a ROBO TX Controller. The max.
length of the host name is 16 characters.

Call: HANDLE fthdl - current handle of the ROBO TX Controller
int devld - controller ID (master or extension controller)
LPSTR strBuff - string buffer that contains the new name of the controller

Return: DWORD errCode - FTLIB_ERR_SUCCESS (no error) or error code

2.22 GetRoboTxBtAddr

WORD GetRoboTxBtAddr (HANDLE fthdl,
int devld,
LPSTR strBuft,
DWORD /len)

The function returns a null-terminated string with the given Bluetooth address of the
connected ROBO TX Controller. The maximum length of the string for receiving the
Bluetooth address is 17 characters.

Example: 00:13:7B:51:BF:8D

Call: HANDLE fthdl - current handle of the ROBO TX Controller
int devld - controller ID (master or extension controller)
LPSTR strBuff - string buffer for receiving the Bluetooth address
DWORD len - max. length of passed string buffer strBuff

Return: DWORD len - length of the copied string of characters, if error = 0

MSC Vertriebs GmbH Page 14 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

2.23 GetRoboTxFwStr

DWORD GetRoboTxFwStr (HANDLE fthdl,
int devld,
LPSTR strBuff,
DWORD /len)

The function returns a null-terminated string with the version of the firmware currently
installed on the ROBO TX Controller. Format: 'V xx.yy' .

Call: HANDLE fthdl - current handle of the ROBO TX Controller
int devld - controller ID (master or extension controller)
LPSTR strBuff - string buffer for receiving the firmware version
DWORD len - max. length of passed string buffer strBuff

Return: DWORD len - length of the copied string of characters, if error = 0

2.24 GetRoboTxFwVal

DWORD GetRoboTxFwVal (HANDLE fthdl,
int devld,
DWORD *version)

This function returns the firmware version as DWORD. This makes it possible to compare
firmware versions. The value is composed of the version of the ROBOLIB.dII library (xx) and
the version of the firmware (yy.zz):

100 | xx | yy| zz |
Byte 4 3 2 1

Call: HANDLE fthdl - current handle of the ROBO TX Controller
int devld - controller ID (master or extension controller)
DWORD *version - variable for receiving a value for firmware
Return: DWORD errCode - FTLIB_ERR_SUCCESS (no error) or error code

2.25 GetRoboTxHwStr

WORD GetRoboTxHwStr (HANDLE fthdl,
int devld,
LPSTR strBuff,
DWORD len)

This function returns a null-terminated string with the existing hardware release version.

Example: 'C’
Call: HANDLE fthdl - current handle of the ROBO TX Controller

MSC Vertriebs GmbH Page 15 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

int devld - controller ID (master or extension controller)
LPSTR strBuff - string buffer for receiving the hardware release
DWORD len - max. length of passed string buffer strBuff

Return: DWORD len - length of the copied string of characters, if error = 0

2.26 GetRoboTxSerialStr

DWORD GetRoboTxSerialStr (HANDLE fthdl,
int devld,
LPSTR strBuff,
DWORD len)

The function returns a null-terminated string with the serial number of the connected ROBO
TX Controller.

Call: HANDLE fthdl - current handle of the ROBO TX Controller
int devld - controller ID (master or extension controller)
LPSTR strBuff - string buffer for receiving the hardware release
DWORD len - max. length of passed string buffer strBuff

Return: DWORD len - length of the copied string of characters, if error = 0

2.27 GetRoboTxDIIStr

DWORD GetRoboTxDIIStr (HANDLE fthdl,
int devld,
LPSTR strBuff,
DWORD len)

The function returns a null-terminated string with the version of the "ROBOLIB.DLL" ROBO-
TX library stored on the controller. Format: 'xx' .

Call: HANDLE fthdl - current handle of the ROBO TX Controller
int devld - controller ID (master or extension controller)
LPSTR strBuff - string buffer for receiving the hardware release
DWORD len - max. length of passed string buffer strBuff

Return: DWORD len - length of the copied string of characters, if error = 0

MSC Vertriebs GmbH Page 16 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

3 Online mode functions

3.1 ftxStartTransferArea

DWORD ftxStartTransferArea (HANDLE fthdl)

Function activates the transfer area in the library for online mode. The communication
thread is started and carries out the IO commands in "online mode". It reads the current
values from the output structure of the transfer area (configuration and output values) and
sends these to the ROBO TX Controller. As a response to an IO request, the controller sends
the current values and the communication thread then updates these values in the input
structure of the transfer area.

Call: HANDLE fthdl - current handle of the ROBO TX Controller
Return: DWORD errCode - FTLIB_ERR_SUCCESS (no error, thread is activated) or
error code

3.2 ftxStopTransferArea

DWORD ftxStopTransferArea (HANDLE fthdl)

Function disables transfer area communication with the ROBO TX Controller. The
communication thread is stopped. Communication with the ROBO TX Controller is stopped.

Call: HANDLE fthdl - current handle of the ROBO TX Controller
Return: DWORD errCode - FTLIB_ERR_SUCCESS (no error, thread stopped) or
error code

3.3 ftxIlsTransferActiv

DWORD ftxisTransferActiv (HANDLE fthdl)

Functions checks if the transfer area is active, i.e. if there is cyclical communication with the
ROBO TX Controller.

Call: HANDLE fthdl - current handle of the ROBO TX Controller
Return: DWORD errCode - error code (ftErrCode.h)
FTLIB_ERR_THREAD NOT_RUNNING - transfer thread is inactive
FTLIB_ERR_THREAD_SYNCHRONIZED - thread synchronizes with the ROBO TX-C
FTLIB_ERR_THREAD_IS_RUNNING - thread is active in online mode

MSC Vertriebs GmbH Page 17 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

3.4 GetTransferAreasArrayAddr

volatile TA_ARRAY *GetTransferAreasArrayAddr (HANDLE fthdl)

The function returns a pointer to the memory area of all transfer areas (transfer areas are
arranged as an array of structures).

Call: HANDLE fthdl - current handle of the ROBO TX Controller
Return: TA_ARRAY * adr - starting address of the memory area of all transfer
areas

All transfer areas (master + up to 8 slaves) are stored in this memory area. The structure of
the transfer area is described in chapter 1. For the layout of the structures within the
transfer area, refer to the header file ROBO_TX_FW.h.

3.5 GetTransferAreaStatusAddr

TA_STATUS *GetTransferAreaStatusAddr (HANDLE fthdl,
int devild)

The function returns a pointer to the structure TA_STATUS within the transfer area. From
this, the current status of the transfer area can be read.

Call: HANDLE fthdl - current handle of the ROBO TX Controller
int devId - controller ID (master or extension controller)
Return: TA_STATUS * adr - pointer to the TA_STATUS structure. The structure

is defined in the ROBO_TX_FW.h header file.

Possible status messages:

TA_STATUS_STOP 0 - transfer area is not running
TA_STATUS_RUN 1 - transfer area is running
TA_STATUS_SYNC 2 - transfer area is being synchronized

MSC Vertriebs GmbH Page 18 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

3.6 StartCounterReset

DWORD StartCounterReset (HANDLE fthdl,
int devld,
int cntid)

Function starts the procedure for resetting the counter input on the ROBO TX Controller to
0. This is an asynchronous process and is therefore not completed directly on return of the
function call. A confirmation may take place via callback, if required. To do this, a callback
function must be set using SetCBCounterResetted (see below).

Call: HANDLE fthdl - current handle of the ROBO TX Controller
int shmId - controller ID (master or extension controller)
int cntld - counter index (0 to 3) of counter 1 to 4
Return: DWORD errCode - FTLIB_ERR_SUCCESS (no error) or error code

3.7 SetCBCounterResetted

void SetCBCounterResetted (void (__stdcall *) cbFunct (DWORD devid, DWORD
cntld))

Function installs the specified callback function in the library. The callback function reports the
status "Counter input reset".

Callback function parameter:

Call: DWORD devId - controller ID (master or extension controller)
DWORD cntld - counter index (0 to 3) of counter 1 to 4

3.8 SetOutMotorValues

DWORD SetOutMotorValues (HANDLE fthdl,
int devld,
int motorld,
int duty_p,
int duty_m)

Function sets the duty values for the two motor outputs M+ and M- for a motor in the
transfer area.

Call: HANDLE fthdl - current handle of the ROBO TX Controller
int devld - controller ID (master or extension controller)
int motorld - index of the motor to be controlled (0 to 3)
int duty_p - duty value for motor output M+
int duty_m - duty value for motor output M-

Return: DWORD errCode - FTLIB_ERR_SUCCESS (no error) or error code

MSC Vertriebs GmbH Page 19 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

3.9 SetOutPwmValues

DWORD SetOutPwmValues (HANDLE fthdl,
int devld,
int outld,
int duty)

Function sets the specified duty value in the transfer area for a PWM output.

Call: HANDLE fthdl - current handle of the ROBO TX Controller
int devld - controller ID (master or extension controller)
int outld - index of the PWM output (0 to -7)
int duty - duty value for the PMW output

Return: DWORD errCode - FTLIB_ERR_SUCCESS (no error) or error code

3.10 SetFtUniConfig

DWORD SetFtUniConfig — (HANDLE fthdl,
int devld,
int jold,
int mode,
BOOL digital)

Function configures a universal input (combination input) to measure analog and digital
voltage and resistance values and for analog distance measuring.

Call: HANDLE fthdl - current handle of the ROBO TX Controller
int devld - controller ID (master or extension controller)
int iold - index of the universal input (0 to 7)
int mode - measurement mode

0= voltage (mV),

1= resistance (5 kQ)

3= ultrasonic distance sensor (distance measurement)
BOOL digital - identifier for whether the value is returned digitally

(FALSE= analog, TRUE= digital), if it is a distance

measurement, then only analog

Return: DWORD errCode - FTLIB_ERR_SUCCESS (no error) or error code

MSC Vertriebs GmbH Page 20 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

3.11 SetFtCntConfig

DWORD SetFtCntConfig (HANDLE fthdl,
int devld,
int cntld,
int mode)

Function configures a counter input (counter); how the status of the counter is to be
interpreted.

Call: HANDLE fthdl - current handle of the ROBO TX Controller
int devld - controller ID (master or extension controller)
int cntId - counter index (0 to 3)
int mode - 0= NORMAL mode, 1= INVERTED mode
Return: DWORD errCode - FTLIB_ERR_SUCCESS (no error) or error code

3.12 SetFtMotorConfig

WORD SetFtMotorConfig (HANDLE fthdl,
int devld,
int motorld,
BOOL status)

Function activates or deactivates motor outputs. Analogous to that, the PMW outputs are
deactivated or activated accordingly.

Call: HANDLE fthdl - current handle of the ROBO TX Controller
int devld - controller ID (master or extension controller)
int motorld - motor index (0 to 3)
BOOL status - TRUE= motor on (motor outputs activated)
FALSE= motor off (PMW output activated)
Return: DWORD errCode - FTLIB_ERR_SUCCESS (no error) or error code

MSC Vertriebs GmbH Page 21 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

3.13 StartMotorExCmd

DWORD StartMotorExCmd (HANDLE fthdl,
int devld,
int mildx,
int duty,
int mDirection,
int sldx,
int sDirection,
int pulseCnt)

Function activates the intelligent motor mode for motor synchronization. The motor moves
to the desired position using the shared counter information. The application shares the
information that the motor has reached the end position by using a previously installed
callback function (see also SetCBMotorExReached()).

Call: HANDLE fthdl - current handle of the ROBO TX Controller
int devld - controller ID (master or extension controller)
int mIdx - motor index (0 to 3) from master (motor)
int duty - duty value for master/slave motor
int mDirection - direction for master motor (0= CW, 1= CCW)
int sIdx - motor index (0 to 3) from slave (motor)
int sDirection - direction for slave motor (0= CW, 1= CCW)
int pulseCnt - number of count pulses for moving to a position,

relative to the starting position

Return: DWORD errCode - FTLIB_ERR_SUCCESS (no error) or error code

3.14 StopMotorExCmd

DWORD StopMotorExCmd (HANDLE fthdl,
int devld,
int mtrldx)

Function immediately stops the previously activated intelligent motor mode for motor
synchronization of the specified motor by resetting the duty values as well as the distance
value in the output structure to 0.

Call: HANDLE fthdl - current handle of the ROBO TX Controller
int devld - controller ID (master or extension controller)
int mtridx - motor index (0 to 3)

Return: DWORD errCode - FTLIB_ERR_SUCCESS (no error) or error code

MSC Vertriebs GmbH Page 22 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

3.15 StopAllIMotorExCmd

DWORD StopAllMotorExCmd (HANDLE fthdl,
int devld)

Function immediately stops the previously activated intelligent motor mode for motor
synchronization of all motors of the ROBO TX Controller by resetting the duty values as well
as the distance values in the output structure to 0.

Call: HANDLE fthdl - current handle of the ROBO TX Controller
int devld - controller ID (master or extension controller)
Return: DWORD errCode - FTLIB_ERR_SUCCESS (no error) or error code

3.16 SetCBMotorExReached

void SetCBMotorExReached (void (__stdcall *) cbFunct (DWORD devid, DWORD
mtrldx))

Function installs to the library the specified callback function that reports the "Motor Reached
State" status during active motor synchronization (intelligent motor mode).

Callback function parameter:

Call: DWORD devid - controller ID (master or extension controller)
DWORD mtrIdx - motor index (0 to 3)

3.17 GetInlOValue

DWORD GetinIOValue (HANDLE fthdl,
int devld,
int iold,
INT16 *value,
BOOL32 *overrun)

Function reads the current value of a universal input from the transfer area and makes it
available to an application. The values of the universal inputs come as a response to an I0
request from the ROBO TX Controller and are updated in the transfer area.

Call: HANDLE fthdl - current handle of the ROBO TX Controller
int devld - controller ID (master or extension controller)
int iold - index, universal input (0 to 7)
INT16 *value - pointer to variable that receives the value
BOOL32 *overrun - pointer to a variable for overrun message

FALSE: no overrun
TRUE: overrun

Return: DWORD errCode - FTLIB_ERR_SUCCESS (no error) or error code

MSC Vertriebs GmbH Page 23 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

3.18 GetInCounterValue

DWORD GetiInCounterValue (HANDLE fthdl,
int devld,
int cntld,
INT16 *count,
INT16 *state)

Function reads the current value of a counter input (counter) from the transfer area and
makes it available to an application.

Call: HANDLE fthdl - current handle of the ROBO TX Controller
int devld - controller ID (master or extension controller)
int cntld - index, counter (0 to 3)
INT16 *count - pointer to variable, current counter status
INT16 *state - pointer to variable, set mode of counter

TRUE: "INVERTED" mode
FALSE: "NORMAL" mode

Return: DWORD errCode - FTLIB_ERR_SUCCESS (no error) or error code

3.19 GetInDisplayButtonValue

DWORD GetInDisplayButtonValue (HANDLE fthdl,
int devld,
INT16 *left,
INT16 *right)

Function reads the current status of the two push-button switches on the display. The time
for how long a push-button switch remains depressed is displayed.

Call: HANDLE fthdl - current handle of the ROBO TX Controller
int devld - controller ID (master or extension controller)
INT16 *left - pointer to INT16 variable, push-button switch (left)
INT16 *right - pointer to INT16 variable, push-button switch (right)
Return: DWORD errCode - FTLIB_ERR_SUCCESS (no error) or error code

MSC Vertriebs GmbH Page 24 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

3.20 FtRemoteCmd

DWORD FtRemoteCmd (HANDLE fthdl,
char *ftCmd,
void (__stdcall *) cbFunc (LPSTR strBuft, DWORD len))

The function sends a console command to the ROBO TX Controller. The response from the
ROBO TX Controller is passed to the callback function as a string buffer and can be analyzed
accordingly. The language of the received data is also provided.

Call: HANDLE fthdl - current handle of the ROBO TX Controller
char *ftCmd - pointer to a null-terminated string with a (remote)
console command
cbFunc - function pointer of a callback function for indicating or
displaying the received remote data from the ROBO TX
Controller
LPSTR strBuff - string buffer pointer with remote data
DWORD len - length of remote data
Return: DWORD errCode - FTLIB_ERR_SUCCESS (no error) or error code

3.21 RTxCleanDisk

DWORD RTxCleanDisk (HANDLE fthdl,
DWORD device)

Function cleans the specified disk on the ROBO TX Controller. Cleaning of the disk is
supported only for the RAMDISK and FLASH disks. Deleting all entries on the SYSTEM
partition is not supported. On a FLASH disk, the file "sys_par.ini" will remain on the disk even
after cleaning the disk.

Call: HANDLE fthdl - current handle of the ROBO TX Controller
DWORD device - target disk (RAM disk=0, flash=1)
Return: DWORD errCode - FTLIB_ERR_SUCCESS (no error) or error code

MSC Vertriebs GmbH Page 25 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

3.22 GetRoboTxMemLayout

DWORD GetRoboTxMemLayout (HANDLE fthdl,
int devld,
PULONG pTAarray,
PULONG pAppStart,
PULONG pAppSize)

Function reads the required address for a ROBO Pro program from the ROBO TX Controller.
All addresses are within the address space of the CPU of the ROBO TX Controller (not in the
PC address space).

Call: HANDLE fthdl - current handle of the ROBO TX Controller
int devld - controller ID (master or extension controller)
PULONG pTAarray - start address of the transfer area array memory area
PULONG pAppStart - application area start address
PULONG pAppSize - application area length

Return: DWORD errCode - FTLIB_ERR_SUCCESS (no error) or error code

3.23 SetCBRoboExtState

void SetCBRoboExtState (void (__stdcall *) cbFunc (DWORD devid, DWORD state))

Function installs a callback function in the library which reports status messages from
external ROBO TX Controllers that are in multi-controller mode (master/slave mode). The
callback function is used to report whether a slave controller is online or offline or if it is or is
not connected with the master.

Call: cbFunc - function pointer of a callback function
DWORD devld - controller ID of a slave controller
DWORD state - status as to whether SLAVE_OFFLINE=0 or

SLAVE_ONLINE=1

MSC Vertriebs GmbH Page 26 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

3.24 SetRoboTxMessage

DWORD SetRoboTxMessage (HANDLE fthdl,
int devlid,
LPCSTR msg)

Function generates a viewable text on the display of the ROBO TX Controller. The text can
only be shown on the display when the transfer area is activated. The maximum text length
is 98 characters (ASCII). When passing an empty text (= 0), the text currently shown on the
display is deleted and the standard output of the ROBO TX Controller reappears.
Alternatively, the messages displayed and buffered can be deleted on the controller using
the two push-button switches.

Call: HANDLE fthdl - current handle of the ROBO TX Controller

int devld - controller ID (master or extension controller)

LPCSTR msg - text that is shown on the display; max. 98 characters
Return: DWORD errCode - FTLIB_ERR_SUCCESS (no error) or error code

MSC Vertriebs GmbH Page 27 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

4 Functions for uploading data

4.1 FtFileUpload

DWORD FtFileUpload (HANDLE fthdl,
char *fname,
DWORD device,
void (__stdcall *) cbFunc (DWORD status))

Function carries out an upload of the specified file to the ROBO TX Controller. The file is
specified using the complete path. The callback function to be specified provides information
on the status, or the status of the transfer.

Call: HANDLE fthdl - current handle of the ROBO TX Controller
char *fname - pointer to a null-terminated string with the complete
path name of the file or program.
DWORD device - target disk (RAM disk=0, flash=1, system=2)
cbFunc - function pointer of a callback function

Return: DWORD errCode - FTLIB_ERR_SUCCESS (no error) thread that executes
the upload is activated, or error code

Possible status codes for the callback function:

FTLIB_ERR_UPLOAD_START - upload started
FTLIB_ERR_UPLOAD_TIMEOUT - upload ends with a timeout
FTLIB_ERR_UPLOAD_ CANCELED - upload canceled by remote party
FTLIB_ERR_UPLOAD_FAILED - upload canceled due to an error
FTLIB_ERR_UPLOAD_FILE_READ_ERR - error reading the file; upload canceled
FTLIB_ERR_UPLOAD_NAK - NAK identifier (0x15) received

Packet repeated (up to 5 attempts)
FTLIB_ERR_UPLOAD_ACK - ACK identifier (0x06) received, next packet sent
FTLIB_ERR_UPLOAD_DONE - upload completed successfully
FTLIB_ERR_UPLOAD_FLASHWRITE - flash is written

4.2 FtRamFileUpload

DWORD FtRamFileUpload (HANDLE fthdl,
DWORD device,
CONST PVOID pProg,
DWORD size,
LPCSTR progname,
void (__stdcall *) cbFunc (DWORD status))

Function carries out an upload of a program or file to the ROBO TX Controller. A pointer to a
memory area containing the data to be transmitted and the length of the bytes to be
transmitted are specified. On the ROBO TX Controller, the file or the program is stored under
the name given to it on the corresponding disk when called. The callback function provides
information on the status, or the status during the transfer.

MSC Vertriebs GmbH Page 28 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

Call:

Return:

HANDLE fthdl - current handle of the ROBO TX Controller

DWORD device - target disk (RAM disk=0, flash=1, system=2)

CONST PVOID pProg - pointer to the program for upload

DWORD size - program length to be transmitted

LPSTR progname - null-terminated string with the program name
cbFunc - function pointer of a callback function

DWORD errCode - FTLIB_ERR_SUCCESS (no error) thread that executes

the upload is activated, or error code

For possible status codes of callback function, see 4.1.

4.3

RoboTxFwUpdate

DWORD RoboTxFwUpdate (HANDLE fthdl,

LPCSTR path,
void (__stdcall *) cbFunc (DWORD status, LPSTR infoStr))

The function generates a thread in the library which carries out a complete firmware update
on the ROBO TX Controller. The files needed for the firmware update are in the specified
directory. The application to be called shares information related to the course of actions via
the installed callback function.

Call:

Return:

HANDLE fthdl - current handle of the ROBO TX Controller
LPCSTR path - directory containing the firmware update files
cbFunc - function pointer of a callback function
DWORD status - firmware update status
For definitions, see 6 below (error codes)
LPSTR infoStr - string with information on the executed action during

the firmware update

DWORD errCode - FTLIB_ERR_SUCCESS (no error) or error code

MSC Vertriebs GmbH Page 29 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

5 Program control functions

5.1 FtProgramRun

DWORD FtProgramRun (HANDLE fthdl,
int devld)

Function starts a loaded program. The program can be loaded e.g. via the function
FtFileUpload() in the ROBO TX Controller. Then the stored program can be launched using
this function.

Call: HANDLE fthdl - current handle of the ROBO TX Controller
int devld - controller ID (master or extension controller)
Return: DWORD errCode - FTLIB_ERR_SUCCESS (no error, program started) or
error code

5.2 FtProgramStop

DWORD FtProgramStop (HANDLE fthdl,
int devid)

Function stops and quits the running program on the ROBO TX Controller. The program can
then be restarted using the function FtProgramRun().

Call: HANDLE fthdl - current handle of the ROBO TX Controller
int devld - controller ID (master or extension controller)
Return: DWORD errCode - FTLIB_ERR_SUCCESS (no error, program stopped) or
error code

MSC Vertriebs GmbH Page 30 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

6 Bluetooth Message API functions

A ROBO TX Controller can establish program-controlled Bluetooth connections to other
ROBO TX Controllers and use this to send short text messages (e.g. 10 bytes). Programs can
then synchronize different ROBO TX Controllers, for instance, remotely.

Additional information (e.g. the current remote signal strength) can also be displayed, and
reactions can be made to remote events in particular (e.g. a dropped connection because
the robot is moving out of range).

To use the Bluetooth messaging functions, at least two ROBO TX Controllers are required.
For a test environment basic setup, it is recommended that you read the introductory
chapter 6 covering "Bluetooth Messaging APT" in the document
"PC_Programming_RoboTXC.pdf" version 1.5.

6.1 Introduction

A maximum of 8 connections are managed in the library. Each connection is referenced via
what is called a channel index which is specified by the application in a particular value
range. When establishing a Bluetooth connection, the Bluetooth address is linked with the
channel index to be specified once the connection is successfully established. Further
accesses to a connection are then only made through the channel index. The application (in
this case the C program) alone manages the channel index <-> Bluetooth address
assignment.

Each function call with an access to a Bluetooth connection has a callback function as a
parameter. The library manages these callback functions for each channel index and calls
these as necessary. It is always the callback function specified last for a connection that is
managed for the particular function.

6.2 On-call duty and receive ready status

The ROBO TX Controller does not automatically accept Bluetooth connections, but only
accepts them once a program is launched and the program signals its on-call duty status
using the function BtListenConOn(). If no program has been launched or the program is
written in such a way that the on-call duty is not present at the start (but, for instance,
conditionally at a later time), then the attempt by a remote party to connect is rejected with
the status code 16 (BT_NO_LISTEN_ACTIVE).

The same behavior applies with the ready receive status of messages. In the case of an
existing Bluetooth connection, only after the ready receive status has been activated by
calling the function BtReadMsgOn() are the received messages reported. Otherwise, the
received messages are dismissed in the firmware.

MSC Vertriebs GmbH Page 31 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

6.3 Loopback function

The loopback function is available for testing the Bluetooth Message API locally on a single
ROBO TX Controller. In this case there is no remote connection between two controllers.
Instead, this mode is only simulated locally.

When scanning using StartScanBtDevice(), the local controller's own Bluetooth address is
always used first. If a connection is established to the controller's Bluetooth address using
ConnectBtAddress(), a (simulated) Bluetooth connection is established immediately. The
same applies when activating on-call duty on the controller's own Bluetooth address using
BtListenConOn(). The channel number assigned to the controller's own Bluetooth address
can be composed of any value from 1 to 8.

If messages are sent on a loopback connection using SendBtMessage(), these messages are
returned locally to the firmware of the controller as an echo and received again immediately
on the same connection (channel). However, in loopback mode it is also required that the
ready receive status has been activated in advance by calling the function BtReadMsgOn().

6.4 StartScanBtDevice

DWORD StartScanBtDevice (HANDLE fthdl,
void (__stdcall *) cbFunc (BT_SCAN_STATUS *result))

Scans for Bluetooth devices in the vicinity of the ROBO TX Controller currently connected to
the PC (not to be confused with searching around the PC). This command is used to start
scanning for available Bluetooth devices. The called callback function then provides
successive scanning results (Bluetooth devices found) and can be called multiple times. The
entire scanning process up until the status BT_INQUIRY_SCAN_END is reported lasts
approximately 30 seconds. By calling the function CancelScanBtDevice(), the process can
also be canceled early.

Call parameters:
fthdl - valid handle of the local ROBO TX Controller
cbFunc - callback function that reports the results of the application scan (list of
Bluetooth devices found)

Return code:
errCode - FTLIB_ERR_SUCCESS (=0) or error code, see ftlib.h and ftMscLib.h

Callback function return codes:
result - pointer to data structure BT_SCAN_STATUS e.g. with a Bluetooth device
found (status=BT_INQUIRY_SCAN_RESULT)

MSC Vertriebs GmbH Page 32 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

Data structure:

typedef struct {

UINT16 status; // Search status
UCHAR8 btaddr[6]; // Bluetooth address
BYTE dummy_1[2];

Char devname[HOSTNAME_LEN + 1]; // Device name

BYTE dummy 2[3];

} BT_SCAN_STATUS;

MSC Vertriebs GmbH Page 33 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

Possible status codes after the scan: (enum BtInquiryScanstatus)

Status | Meaning

0 = BT_INQUIRY_CAN_NOT_POSSIBLE
Scanning Bluetooth devices is not possible.
1 = BT_INQUIRY_SCAN_START
Scanning activated
2 = BT_INQUIRY_SCAN_RESULT

Results of a scan; the address btaddr and device name devhame of
a found device are returned.

3 = BT_INQUIRY_SCAN_BUSY
Scanning is still active

4 = BT_INQUIRY_SCAN_TIMEOUT
Timeout when scanning; the end identifier was not received by the
library

5 = BT_INQUIRY_SCAN_END

Scanning stopped; the results are the Bluetooth devices reported in
previous calls.

6.5 CancelScanBtDevice

DWORD CancelScanBtDevice (HANDLE fthdl)

Early cancellation of the scan for Bluetooth devices in the vicinity of the current ROBO TX
Controller connected to the PC triggered by the StartScanBtDevice() function. No feedback is
provided via the callback function.

Call parameters:
fthdl - valid handle of the local ROBO TX Controller

Return code:
errCode - FTLIB_ERR_SUCCESS (=0) or error code, see ftlib.h and ftMscLib.h

MSC Vertriebs GmbH Page 34 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

6.6 ConnectBtAddress

DWORD ConnectBtAddress (HANDLE fthdl,
DWORD chanldx,
BYTE *btaddr,
void (__stdcall *) cbFunc (BT_CB *data))

Active establishment of a Bluetooth connection to a Bluetooth remote party uniquely
identified by the Bluetooth target address. The result of the attempt to connect is reported
asynchronously via the callback function. After a successful connection is made, this
connection is managed in the library with the specified channel index (chanldx, alias remote
call number) for further accesses. To make multiple Bluetooth connections active
simultaneously, this function can be called multiple times (each time with one channel index
(chanldx), alias remote call number).

Limitations:
The ConnectBtAddress function reports via the callback call an error
(BT_CON_CHANNEL_BUSY) if on the same channel index an on-call duty status has
already been registered via the function BtListenConOn(). This prevents multiple
connections between two boards which could occur if a program initiates calls to
another board while simultaneously also attempting to accept calls from the same
board.

Call parameters:
fthdl - valid handle of the local ROBO TX Controller
chanldx - channel index under which the connection is managed. Determined by the
calling application (1 to 8).
*pbtaddr - pointer to the associated Bluetooth address (6 bytes)
cbFunc - callback function reporting the result of the connection

Return code:
errCode - FTLIB_ERR_SUCCESS (=0) or error code, see ftlib.h and ftMscLib.h

Callback function return codes:
*data - pointer to data structure BT_CB

Data structure:

typedef struct { // 4 bytes
UINT16 chanldx; // Channel index
UINT16 status; // Connection result
} BT _CB;

MSC Vertriebs GmbH Page 35 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

Possible status codes:

Status | Meaning

0 = BT_SUCCESS, action successful, connection established

1 = BT_CON_EXIST, already connected

2 = BT_CON_SETUP, connection to this BT address is actively being
carried out

3 = BT_SWITCHED_OFF , connection failed: Bluetooth is switched off
locally as per configuration

4 = BT_ALL_CHAN_BUSY , connection failed: Bluetooth channel no
longer available locally

5 = BT_NOT_ROBOTX , connection failed: incompatible BT device
cannot be connected (not a ROBO-TX controller)

6 = BT_CON_TIMEOUT , failed: timeout, no device can be reached at
this address (timeout)

12 = BT_DISCON_INDICATION, signals passive termination of a
connection (e.g. triggered by remote party). The Bluetooth
connection no longer exists.

14 = BT_CHANNEL_BUSY, active connection is not permitted when the
listen function is activated on the same channel index.

15 = BT_BTADDR_BUSY, for this Bluetooth address, there is already an
active connection via a different channel index. Dual connections
are not permitted.

16 = BT_NO_LISTEN_ACTIVE, on the remote party no listen function
was activated; connection is not possible.

MSC Vertriebs GmbH Page 36 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

6.7 BtListenConOn

DWORD BtListenConOn (HANDLE fthdl,
DWORD chanldyx,
BYTE *btadr,
void (__stdcall *) cbFunc (BT_CB *data)

Passive establishment of a Bluetooth connection by a Bluetooth remote party uniquely
identified by the specified Bluetooth source address. In this case, the ROBO TX Controller
signals it is ready to receive exactly one Bluetooth connection by the named remote party
(activated on-call duty status). Via the callback function, the incoming connection is reported
asynchronously, as soon as this status is reached, just as any possible errors are reported.
After the connection is made, the connection is managed in the library with the specified
channel index (chanldx, alias remote call number) for further accesses. To receive multiple
active Bluetooth connections at the same time, this function can be called multiple times
(each time with one chanldx, alias remote call number).

Limitations:
The ListenBtAddress function reports an error (BT _CON_CHANNEL_BUSY) via the
callback call if on the same channel index there is already an active connection that
was made via ConnectBtAddress(). This prevents multiple connections between two
boards which could occur if a program initiates calls to another board while
simultaneously also attempting to accept calls from the same board.

Call parameters:
fthdl - current handle of the local ROBO TX Controller
chanldx - channel index under which the connection is managed. Determined by the
calling application (1 to 8).
btadr - pointer to a valid Bluetooth address (6 bytes) or NULL
cbFunc - pointer of callback function that reports the result (message)

Return code:
errCode - FTLIB_ERR_SUCCESS (=0) or error code, see ftlib.h and ftMscLib.h

Callback function return codes:
*data - pointer to data structure BT_CB

Data structure:

typedef struct { // 4 bytes
UINT16 chanldx; // Channel index
UINT16 status; // Connection result
} BT _CB;

MSC Vertriebs GmbH Page 37 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

Possible status codes:

Status | Meaning

0 = BT_SUCCESS, the listen function is activated.

3 = BT_SWITCHED_OFF, the listen function cannot be activated:
Bluetooth is switched off locally as per configuration.

5 = BT_NOT_ROBOTX, listen function failed: BT address of
incompatible BT device that cannot be connected (not a ROBO TX-
®)

9 = BT_LISTEN_ACTIVE, the listen function has already been
activated for the specified channel index.

11 = BT_CON_INDICATION, signals a connection on the passive side. A
Bluetooth connection from the specified Bluetooth address is
established.

12 = BT_DISCON_INDICATION, signals passive termination of a
connection (e.g. triggered by remote party). The Bluetooth
connection no longer exists.

14 = BT_CHANNEL_BUSY, passive connection is not permitted when a
connection exists on the same channel index.

15 = BT_BTADDR_BUSY, for this Bluetooth address, there is already a
listen registration (on-call duty) via a different channel index. Dual
connections are not permitted.

MSC Vertriebs GmbH Page 38 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

6.8 BtListenConOff

DWORD BtListenConOff (HANDLE fthdl,
DWORD chanldyx,
void (__stdcall *) cbFunc (BT_CB *data)

This function deactivates an on-call duty status that was previously activated by the
BtListenConOn() function on the specified channel index. This means that as of this moment,
Bluetooth connections are no longer accepted. However, a Bluetooth connection that already
exists on this channel index will not be dropped by this function call, but will instead remain
intact. Ending the on-call duty in this case only has an effect on the period after the existing
connection is ended (a connection can no longer be accepted until BtListenConOn() has been
called again).

Call parameters:

fthdl - current handle of the local ROBO TX Controller
chanldx - channel index (1 to 8), not available for loopback mode
cbFunc - pointer of callback function that reports the status (message)

Return code:
errCode - FTLIB_ERR_SUCCESS (=0) or error code, see ftlib.h and ftMscLib.h

Callback function return codes:
*data - pointer to data structure (BT_CB)

Data structure:

typedef struct { // 4 bytes
UINT16 chanldx; // Channel index
UINT16 status; // Connection result
} BT _CB;

Possible status codes:

Status | Meaning
0 = BT_SUCCESS, the listen function has been deactivated.

MSC Vertriebs GmbH Page 39 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

6.9 DisconnectBt

DWORD DisconnectBt (HANDLE fthdl,
DWORD chanldx,
void (__stdcall *) cbFunc (BT_CB*data))

Termination of an active Bluetooth connection referenced by the specified channel index. In
this case it does not matter whether the connection was made actively or passively. The
result of the attempt to disconnect is reported asynchronously via the callback function.

Call parameters:

fthdl - valid handle of the local ROBO TX Controller
chanldx - channel index (1 to 8)
cbFunc - callback function reporting the result of the disconnection

Return code:
errCode - FTLIB_ERR_SUCCESS (=0) or error code, see ftlib.h and ftMscLib.h

Callback function return codes:
*data - pointer to data structure (BT_CB)

Data structure:

typedef struct { // 4 bytes
UINT16 chanldx; // Channel index
UINT16 status; // Connection result
} BT_CB;

Possible status codes:

Status | Meaning
0 = BT_SUCCESS, action successful, connection was successfully
terminated
7 = BT_CON_INVALID, there is no active connection with the specified
channel index
8 = BT_CON_RELEASE, termination of connection to this BT address is
already activated and is being carried out

MSC Vertriebs GmbH Page 40 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

6.10 SendBtMessage

DWORD SendBtMessage (HANDLE fthdl,
DWORD chanldx,
DWORD [en,
LPSTR sendBuff,
void (__stdcall *) cbFunc (BT_CB *data))

Writes data to an active Bluetooth connection referenced by the channel index. This call is
used to pass a pointer to a send data buffer and a length. The function reads the specified
number of bytes from the send data buffer. After the function call, the send data buffer can
be freed up again. The result of the send attempt is reported asynchronously via the callback
function.

Call parameters:
fthdl - current handle of the local ROBO TX Controller
chanldx - channel index (1 to 8)
*sendBuff - pointer to send buffer with the send data (message)
len - length of the send data in the send buffer (max. 255 characters)
cbFunc - pointer of callback function that reports the result

Return code:
errCode - FTLIB_ERR_SUCCESS (=0) or error code, see ftlib.h and ftMscLib.h

Callback function return codes:
*data - pointer to data structure (BT_CB)

Data structure:

typedef struct { // 4 bytes

UINT16 chanldx; // Channel index

UINT16 status; // Result of the operation
} BT _CB;

Possible status codes:

Status | Meaning
0
7

BT_SUCCESS, data successfully recorded (confirmed)

BT_CON_INVALID, there is no active connection with the specified
channel index.

MSC Vertriebs GmbH Page 41 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

6.11 BtReadMsgOn

DWORD BtReadMsgOn (HANDLE fthd,
DWORD chanldx,
void (__stdcall *) cbFunc (BT_RECV_CB *data)

This function is used to display the ready receive status of data (messages) on an active
Bluetooth connection referenced by the channel index. When receiving a message, the
callback function is called which contains a pointer to the received data and the length of the
data. For the ready receive status, this function must be called only once (per channel
index). Accordingly, incoming data call the callback function multiple times.

Call parameters:

fthdl - current handle of the local ROBO TX Controller
chanldx - channel index (1 to 8)
cbFunc - pointer of callback function that reports the result (message)

Return code:
errCode - FTLIB_ERR_SUCCESS (=0) or error code, see ftlib.h and ftMscLib.h

Callback function return codes:
*data - pointer to data structure (BT_RECV_CB)

Data structure:
typedef struct {

UINT16 chanldx; // Connection index

UINT16 status; // Read attempt result, enum CB_BtStatus

UINT16 msglen; // Length of the received message (max. 255)

UCHAR8 *msg; // Pointer to the received Bluetooth message
} BT_RECV_CB;

Possible status codes:

Status | Meaning

0 = BT_SUCCESS, action successful, the message listener is activated,
messages ready to be received from partner, length = 0
7 = BT_CON_INVALID, there is no active connection with the specified

channel index, length = 0

10 = BT_RECEIVE_ACTIVE, the receive message function has already
been activated for the specified channel index, length = 0

13 = BT_MSG_INDICATION, signals the receipt of a message from the
remote party, length != 0

MSC Vertriebs GmbH Page 42 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

6.12 BtReadMsgOff

DWORD BtReadMsgOff — (HANDLE fthdl,
DWORD chanldx,
void (__stdcall *) cbFunc (BT_CB *data)

Deactivation of the activated ready receive status by the function BtReadMsgOn(). Calling
this function prevents the receipt of data on the connection with the specified channel index.
However, incoming data are dismissed in the interim by the ROBO TX Controller on any
Bluetooth connection that may still exist.

Call parameters:

fthdl - valid handle of the local ROBO TX Controller
chanldx - channel index (1 to 8)
cbFunc - pointer of callback function that reports the status

Return code:
errCode - FTLIB_ERR_SUCCESS (=0) or error code, see ftlib.h and ftMscLib.h

Callback function return codes:
*data - pointer to data structure (BT_CB)

Data structure:

typedef struct { // 4 bytes

UINT16 chanldx; // Channel index

UINT16 status; // Result of the operation
} BT _CB;

Possible status codes:

Status | Meaning
0 = BT_SUCCESS, the ready receive status for incoming messages has
been deactivated.

MSC Vertriebs GmbH Page 43 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

6.13 StatusBtConnection

void StatusBtConnection (DWORD chanldx, BT _STATUS *status)

A library function that returns the (current) status of a Bluetooth connection for the specified
channel index if the transfer area is not active. The local library information is returned via
the BT_STATUS structure. The field strength is specified with 0. The remaining status codes
are set by the library depending on the controller's reported status information. If the
transfer area is activated, this function returns the current status information, including the
field strength from the transfer area, for the specified channel index.

Call parameters:
chanldx - channel index (1 to 8)
BT_STATUS - pointer to data structure

For the definition and meaning of the status codes, see section 6.15, "Status indicator in the
transfer area".

MSC Vertriebs GmbH Page 44 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

6.14 List of status codes in the callback functions

List of possible status codes: (enum CB_BtStatus)

Status | Meaning

0 = BT_SUCCESS, action successful

1 = BT_CON_EXIST, already connected

2 = BT_CON_SETUP , connection to this BT address is actively being
carried out

3 = BT_SWITCHED_OFF , connection failed: Bluetooth is switched off
locally as per configuration

4 = BT_ALL_CHAN_BUSY , connection failed: Bluetooth channel no
longer available locally

5 = BT_NOT_ROBOTX , connection failed: incompatible BT device
cannot be connected (not a ROBO TX Controller)

6 = BT_CON_TIMEOUT, failed: timeout, no device can be reached at
this address (timeout)

7 = BT_CON_INVALID, there is no active connection with the specified
channel index.

8 = BT_CON_RELEASE, termination of connection to this BT address is
already activated and is being carried out

9 = BT_LISTEN_ACTIVE, the listen function has already been
activated for the specified channel index.

10 = BT_RECEIVE_ACTIVE, the receive function has already been
activated.

11 = BT_CON_INDICATION, signals a connection on the passive side. A
Bluetooth connection from the specified Bluetooth address is
established.

12 = BT_DISCON_INDICATION, signals passive termination of a
connection (e.g. triggered by remote party). The Bluetooth
connection no longer exists.

13 = BT_MSG_INDICATION, signals the receipt of a message from the
remote party

14 = BT_CHANNEL_BUSY, the specified channel index is already
registered (on-call duty) or in use (active connection).

15 = BT_BTADDR_BUSY, for this Bluetooth address, there is already an
on-call duty status or an active connection via a different channel
index.

16 = BT_NO_LISTEN_ACTIVE, on the remote party no listen function
was activated; connection is not possible.

MSC Vertriebs GmbH Page 45 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

6.15 Status indicator in the transfer area

For each channel index (1 to 8), there is a connection status structure in the transfer area in
which information about the current connection status and the remote signal strength is
stored. When starting and ending the transfer area, the values are initialized using 0.

Possible Bluetooth connection status codes:

enum BtConnState

{ BT_STATE_IDLE = O, // BT channel is disconnected
BT_STATE_CONN_ONGOING, // BT channel is being connected
BT_STATE_CONNECTED, // BT channel is connected
BT_STATE_DISC_ONGOING // BT channel is being disconnected

};

Data structure:

typedef struct { // 8 bytes
UINT16 ConState; // Connection status (enum BtConnState)
BOOL16 1is_listen; // if TRUE - BT channel is waiting for

// incoming connection (listening)
BOOL16 1is_receive; // if TRUE - BT channel is ready to receive
// incoming messages
UINT16 1link quality; // 0...31 signal quality
// 0- the worst, 31- the best signal quality
} BT_STATUS;

The Bluetooth status indicator is integrated into the existing FTX1_STATE structure. The
status information in the structure is updated every second when the transfer area is active.

#define BT_CNT_MAX 8
typedef struct
{
// used by local application
BOOLS8 init;
BOOLS8 config;
unsigned char dummy[2];
UINT32 trace;
// public state info
BOOL8 i0_mode;
UCHARS id;
UCHARS8 info_id;
UCHARS8 config_id;
BOOL8 io_slave_alive[SLAVE_CNT_MAX];
BT_STATUS btstatus[BT_CNT_MAX];
PGM_INFO master_pgm;
PGM_INFO local _pgm;

} FTX1_STATE;

MSC Vertriebs GmbH Page 46 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

7 1°C API functions

A ROBO TX Controller can operate external sensors and actuators that have an IC interface
via the controller's I°C interface (EXT2 connection). They can be operated from a PC
program via the I°C API functions described as follows.

The I°C interface and its pin assignment and internal wiring are described in the introductory
chapter 7 (I°C interface) in the document "PC_Programming_RoboTXC.pdf", version 1.5.

7.1 Introduction

Each of the following function calls represents its own I°C bus access with the device address
specification. This makes it possible to activate a variety of different I°C devices even within
one program.

Important notes:

The I°C device address must be specified with only 7 bits in accordance with the I°C specification
(value range: 0 to 127).

Moreover, I°C the device addresses 80 and 84 (0x50 and O0x54) are reserved for an internal
EEPROM of the ROBO TX Controller. Access to these addresses is not permitted by the API. The
I°C device addresses 81 through 83 and 85 through 87 (0x51 through 0x53 and 0x55 through
0x57) are also reserved memory areas for the same EEPROM, but are not used by the firmware. In
this case, bus access conflicts could (but may not necessarily) occur with external I%C devices that
use one of these addresses.

7.2 ftxl2cRead

DWORD ftxI2cRead (HANDLE fthdl,
BYTE DevAddr,
DWORD Offset,
BYTE Flags,
void (__stdcall *) cbFunc (I12C_CB *data))

One byte (8-bit) or two bytes (16-bit) is read on the I°C bus at the "DevAddr" device address
and possibly within the device at the "Offset" subaddress. The addressing, data bus width,
byte sequence (16-bit only), behavior in the case of bus errors and access speed are
specified using the "Flags" parameter. Via the callback function, the result of the read access
as well as the read datum is returned asynchronously as soon as this status is reached.

Call: fthdl - valid handle of the local ROBO TX Controller
BYTE DevAddr - 12C device address

DWORD Offset - if addressing is required within the device, then this
internal address is passed here. The value of "Flags"
specifies the length of the internal address in bits 0..1.

MSC Vertriebs GmbH Page 47 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

BYTE Flags - Access flags used:

Bit 0..1 | Addressing 00: none ("Offset" invalid)

01: 8-bit addressing

10: 16-bit addressing, MSB first
11: 16-bit addressing, LSB first

Bit 2..3 | Data width 00: - not permitted -

01: 8-bit data (1 byte)

10: 16-bit data (2 bytes), MSB first
11: 16-bit data (2 bytes), LSB first

Bit 4 KeepOpen 0: normal access
1: quick access without STOP/START
Bit 5..6 | Error Mask = 00: abort
behavior in the | 01: repeat up to 10 times
case of bus 10: repeat until successful
error 11: - not permitted -
Bit 7 Clock rate 0: standard (100 kHz)

1: fast (400 kHz)

cbFunc - callback function that reports back the result of the
operation asynchronously.
Return:
DWORD errCode - FTLIB_ERR_SUCCESS (no error) or error code for an error
during the call (see 7.4).

Callback function return codes:

*data - pointer to data structure 12C_CB
Data structure:
typedef struct { // 4 bytes
UINT16 value; // Datum read (with 8-Bit, only LSByte is valid)
UINT16 status; // Result of 12C bus operation (see 7.4)

} 12C_CB;

7.3 ftxl2cWrite

DWORD ftxI2cWrite (HANDLE fthdl,
BYTE DevAddr,
DWORD Offset,
WORD Data,
BYTE Protocol,
void (__stdcall *) cbFunc (I12C_CB *data))

One byte (8-bit) or two bytes (16-bit) is written on the I’C bus at the "DevAddr" device
address and possibly within the device at the "Offset" subaddress. The addressing, data
width, byte sequence (16-bit only), behavior in the case of bus errors and access speed are
specified using the "Flags" parameter. Via the callback function, the result of the write
access as is returned asynchronously as soon as this status is reached.

MSC Vertriebs GmbH Page 48 of 62

Programming the ROBO TX Controller

Part 2: Windows Library "ftMscLib"

Call: fthdl
BYTE DevAddr

DWORD Offset

WORD Data
BYTE Flags

cbFunc

Return:
DWORD errCode

Callback function return codes:
*data

Data structure:
typedef struct {

UINT16 value;
UINT16 status;
} 12C _CB;

12C device address

valid handle of the local ROBO TX Controller

if addressing is required within the device, then this

internal address is passed here. The value of "Protocol"
specifies the length of the internal address

access flags used:

datum (8-bit or 16-bit) to be written

Bit 0..1 | Addressing

00: none ("Offset" invalid)

01: 8-bit addressing

10: 16-bit addressing, MSB first
11: 16-bit addressing, LSB first

Bit 2..3 Data width

00: - not permitted -

01: 8-bit data (1 byte)

10: 16-bit data (2 bytes), MSB first
11: 16-bit data (2 bytes), LSB first

Bit 4 KeepOpen

0: normal access
1: quick access without STOP/START

Bit 5..6 Error Mask =
behavior in the
case of bus

error

00: abort

01: repeat up to 10 times
10: repeat until successful
11: - not permitted -

Bit 7 Clock rate

0: standard (100 kHz)
1: fast (400 kHz)

- callback function that reports back the result of the
operation asynchronously.

- FTLIB_ERR_SUCCESS (no error) or error code for an error

during the call (see 7.4).

- pointer to data structure 12C_CB

// 4 bytes

// \Written datum repeated
// Result of 12C bus operation (see 7.4)

MSC Vertriebs GmbH

Page 49 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

7.4 Error codes of I°C API functions (errCode or status)

Return codes during call (errCode)

Value of Meaning

errCode

0x00000000 | Function call successful FTLIB_ERR_SUCCESS
0xE0005000 | Invalid device address FTLIB_I2C_INVALID_DEV_ADDR
0xE0005001 | Invalid flag for address size FTLIB_I2C_INVALID_FLAGS_ADDRMODE
0xE0005002 | Invalid flag for data width FTLIB_I2C_INVALID_FLAGS_DATAMODE
0xE0005003 | Invalid flag for error mask (behavior in the event of bus error)

FTLIB_I2C_INVALID_FLAGS_ERRMODE

Return codes during callback (status)

Status Meaning

code

0 I2C operation successful I2C_SUCCESS

1 I2C read error [2C_READ_ERROR
2 I2C write error I12C_WRITE_ERROR

MSC Vertriebs GmbH Page 50 of 62

Programming the ROBO TX Controller

Part 2: Windows Library "ftMscLib"

8 Error codes

The ftErrCode.h include file contains error codes:

#define
#define

#define
#define
#define

#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define

#define
#define
#define

FTLIB_ERR_SUCCESS
FTLIB_ERR_NO_MEMORY

FTLIB_ERR_FAILED
FTLIB_ERR_TIMEOUT
FTLIB_ERR_INVALID_PARAM

FTLIB_ERR_SOME_DEVICES_ARE_OPEN
FTLIB_ERR_DEVICE_IS_OPEN
FTLIB_ERR_DEVICE_NOT_OPEN

FTLIB_ERR_NO_SUCH_DEVICE_INSTANCE

FTLIB_ERR_UNKNOWN_DEVICE_HANDLE
FTLIB_ERR_LIB_IS_INITIALIZED
FTLIB_ERR_LIB_IS_NOT_INITIALIZED
FTLIB_ERR_THREAD NOT_STARTABLE
FTLIB_ERR_THREAD_IS_RUNNING
FTLIB_ERR_THREAD_NOT_RUNNING
FTLIB_ERR_THREAD_SYNCHRONIZED

FTLIB_ERR_TIMEOUT TA
FTLIB_ERR_CREATE_EVENT
FTLIB_ERR_CREATE_MM_TIMER

// Upload files to ROBO TX Controller

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

FTLIB_ERR_UPLOAD_FILE_NOT_OPEN
FTLIB_ERR_UPLOAD_FILE_READ_ERR
FTLIB_ERR_UPLOAD_INVALID_ FSIZE
FTLIB_ERR_UPLOAD_START
FTLIB_ERR_UPLOAD_CANCELED
FTLIB_ERR_UPLOAD_FAILED
FTLIB_ERR_UPLOAD_TIMEOUT
FTLIB_ERR_UPLOAD_ACK
FTLIB_ERR_UPLOAD_NAK
FTLIB_ERR_UPLOAD_DONE
FTLIB_ERR_UPLOAD_FLASHWRITE
FTLIB_ERR_REM_CMD_FAILED
FTLIB_ERR_REM_CMD_NOT_SUPPORTED
FTLIB_ERR_FWUPD_GET_FILES
FTLIB_ERR_FWUPD_NO_FILES

// Open connection to controller

#define
#define
#define
#define

#define

FTLIB_ERR_ACCESS_DENIED
FTLIB_ERR_OPEN_COM
FTLIB_ERR_INIT_COM
FTLIB_ERR_INIT_COM_TIMEOUT

FTLIB_ERR_WRONG_HOSTNAME_LEN

0x00000000L
OxEO000100L

OxE0001000L
OxE000100CL
OxE0001018L

OxE0001101L
OxE0001102L
OxEO0001103L
OxE0001104L

OxE0001283L
OxE0001286L
OxE0001287L
OxXEO0012A0L
OXEOO012A5L
OxXEOO0012A6L
OxXEOOO012AFL

OxEO00012BOL
OxEO00012B1L
OxE00012B2L

OxE0001400L
OxE0001401L
OxE0001402L
OxE0001403L
OxE0001404L
OxE0001405L
OxE0001406L
OxE0001407L
OxE0001408L
OxE0001409L
OxXEO00140AL
OxE000140BL
OxE000140CL
OxE000140DL
OXEOO0140EL

OxE0001905L
OxEO0001906L
OxE0001908L
OxEO0001909L

OxEO0002000L

MSC Vertriebs GmbH

Page 51 of 62

Programming the ROBO TX Controller

Part 2: Windows Library "ftMscLib"

// Firmware update

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

FTLIB_FWUPD_UPLOAD_START
FTLIB_FWUPD_UPLOAD_DONE
FTLIB_FWUPD_TIMEOUT
FTLIB_FWUPD_FLUSH_DISK
FTLIB_FWUPD_CLEAN_DISK
FTLIB_FWUPD_ERR_FILE_READ
FTLIB_FWUPD_UPLOAD_FAILED
FTLIB_FWUPD_STARTING
FTLIB_FWUPD_FINISHED
FTLIB_FWUPD_REM_COMMAND
FTLIB_FWUPD_REM_TIMEOUT
FTLIB_FWUPD_REM_FAILED
FTLIB_FWUPD_1Z_STEPS
FTLIB_FWUPD_STEP

// Bluetooth

#define
#define
#define
#define
#define
#define

// 12C
#define
#define
#define
#define

#define

FTLIB_BT_INVALID_CONIDX
FTLIB_BT_CON_NOT_EXISTS
FTLIB_BT_CON_ACTIVE
FTLIB_BT_CON_INACTIVE
FTLIB_BT_CON_WRONG_ADDR
FTLIB_BT_CON_WAIT_BUSY

FTLIB_12C_INVALID_DEV_ADDR
FTLIB_12C_INVALID_FLAGS_ADDRMODE
FTLIB_12C_INVALID_FLAGS_DATAMODE
FTLIB_12C_INVALID_FLAGS_ERRMODE

FTLIB_ERR_UNKNOWN

OxEO003000L
OxXEO003001L
OxEO0003002L
OxXEO003003L
OxXEO003004L
OxEO003005L
OxEO003006L
OxEO003007L
OxEO003008L
OxXEO003009L
OXEOOO300AL
OxXEOO00300BL
OxEO00300CL
OxEO00300DL

OxEO0004000L
OxE0004001L
OxE0004002L
OxEO0004003L
OxE0004004L
OxXEO0004005L

OxEO005000L
OxEO005001L
OxEO0005002L
OxXEO005003L

OXEFFFFFFFL

MSC Vertriebs GmbH

Page 52 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

9 Memory layout of transfer area

The transfer area of the "ftMscLib" library is divided into multiple data structures (see also
the layout of the transfer area in Chapter 1, "General information"). For the comparison of
the output and input structure, information is sent to the ROBO TX Controller and received,
just like in the "old library via a communication thread. The comparison cycle is controlled
via a multimedia timer and is 10 ms. The transfer area within the library has the same
structure as the transfer area within the firmware on the controller.

The following describes only the structure variables in the individual structures that are
important for communication with the ROBO TX Controller or for reading out particular
information. All other fields are used by the firmware and cannot be changed by the library,
nor read out.

Note: All definitions and data structures not listed here are defined in the following header
files:

common.h
TtErrCode.h
ROBO_TX FW.h
ftMscLib.h

9.1 FT_VERSION structure
Contains information on the versions of the ROBO TX Controller firmware and hardware.

// Versions of hardware and firmware components, 16 bytes
typedef struct

FT_VER hardware;
FT_VER firmware;
FT_VER ta;:
char reserved[4];
} FT_VERSION;
Variable |Data type Meaning
hardware |FT_VER Hardware version (hardware.part.a = 'A' or 'B' or 'C')
firmware |FT_VER Firmware version ("V %d.%02d, DLL %d", firmware.part.c,
firmware.part.d, firmware.part.b)
ta FT_VER Version of transfer area ("V %d.%02d", ta.part.c, ta.part.d)

9.2 TA_INFO structure
Contains information on the ROBO TX Controller.

// Info structure, 64 bytes

MSC Vertriebs GmbH Page 53 of 62

Programming the ROBO TX Controller

Part 2: Windows Library "ftMscLib"

typedef struct
{

char device_name[DEV_NAME_LEN_MAX + 1];
char bt_addr[BT_ADDR_STR_LEN + 1];
char reserved;
UINT32 ta_array_start addr;
UINT32 pgm_area_start_addr;
UINT32 pgm_area_size;
FT_VERSION version;
3 TA_INFO;
Variable Data type Meaning
device_name char[] Stores the name of the ROBO TX Controller; can be
changed using a library function
bt_addr char[] Stores the assigned Bluetooth address
ta_array_start_addr | UINT32 Starting address of the TransferAreaArray memory area
pgm_area_start_addr | UINT32 Program area starting address
pgm_area_size UINT32 Program area length
version FT_VERSION | Supplies the installed firmware and hardware version

(see FT_VERSION structure)

9.3 BT _STATUS structure
Particular Bluetooth status information can be read.

// Bluetooth connection status structure, 8 bytes
typedef struct btstatus_ s

{
UINT16 conn_state;
BOOL16 is _listen;
BOOL16 is_receive;
UINT16 link quality;
} BT_STATUS;
Variable Data type Meaning
conn_state UINT16 See enum BtConnState
is_listen BOOL16 If TRUE - Bluetooth channel waits for incoming
connection (listening)
is_receive BOOL16 If TRUE - Bluetooth is ready to receive messages
link_quality UINT16 0...31, 0 = weakest, 31 = best signal quality

MSC Vertriebs GmbH

Page 54 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

9.4 TA_STATE structure

Particular status information can be read and stored. For a configuration comparison, e.g.
the variable config_id is incremented and thus the communication thread automatically
detects that the configuration in the transfer area is to be updated on the ROBO-TX
controller. The variable is monitored constantly by the library.

// State structure, 100 bytes
typedef struct

{
// Used by local program
BOOLS pgm_initialized;
char reserved_1[7];
// Public state info
BOOLS8 dev_mode;
UINT8 id;
UINT8 info_id;
UINT8 config_id;
BOOL8 ext_dev_connect_state[N_EXT];
BT_STATUS btstatus[BT_CNT_MAX];
char reserved_2[8];
PGM_INFO local pgm;
} TA_STATE;
Variable Data type Meaning
config_id UINT8 Marks a configuration change (inputs, counter, etc.)
in the transfer area; the configuration change is
activated with the next comparison on the controller.
Must be increased by 1 each time if something
changed in the configuration.
ext_dev_connect_state | BOOL8[] Identification for which slaves are active on the RS-
485 bus
btstatus BT_STATUS Status of Bluetooth connections (see BT_STATUS
1 structure)

MSC Vertriebs GmbH Page 55 of 62

Programming the ROBO TX Controller

Part 2: Windows Library "ftMscLib"

9.5 TA_CONFIG structure

The structure specifies the configuration of the motor outputs, universal inputs and the
counter inputs. This structure is sent to the ROBO TX Controller each time the

configuration is changed, activating the configuration of the inputs and outputs.

// Config structure, 88 bytes

typedef struct
{
UINT8
char
BOOLS8
UNI_CONFIG
CNT_CONFIG
char
} TA _CONFIG;

pgm_state_req;
reserved_1[3];
motor[N_MOTOR] ;
uni[N_UNI];
cnt[N_CNT];
reserved_2[32];

Variable

Data type

Meaning

motor

BOOLS[]

Specifies if the outputs are defined as 4 motor outputs
(=TRUE) or as 8 digital outputs (=FALSE, PWM outputs).

uni

UNT_CONFIG[]

Specifies the configuration of the 8 universal inputs:
mode= 0, digital= TRUE - digital 10 V (trail sensor)
mode= 0, digital= FALSE - analog 10 V (color sensor)
mode= 1, digital= TRUE - digital 5 kOhm (push-
button switch)

mode= 1, digital= FALSE - analog 5 kOhm (NTC, etc.)
mode= 3, digital= unimportant - ultrasonic distance sensor

cnt

CNT_CONFIG[]

Specifies the configuration of the counter input:
mode= 0 - normal (change from 0 -> 1)
mode= 1 - inverse (change from 1 -> 0)

MSC Vertriebs GmbH

Page 56 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

9.6 TA_INPUT structure

For each cyclical comparison, the FTX1_INPUT structure is transferred from the ROBO TX
Controller to the library. At the time of the comparison, this contains all current input
values and internal flags for controlling the motor.

// Input structure, 68 bytes
typedef struct

{
INT16 uni[N_UNIT;
INT16 cnt_in[N_CNT];
INT16 counter[N_CNT];
INT16 display_button_left;
INT16 display_button_right;
BOOL16 cnt_resetted[N_CNT];
BOOL16 motor_pos_reached[N_MOTOR];
char reserved[16];
} TA_INPUT;
Variable Data type | Meaning
uni INT16[1 Contains for each universal input the value currently
determined by the firmware.
cnt_in INT16[] | Current configuration of the counter input (normal,
inverse)
counter INT16[1 | Current status of counter

display_button_left | INT16[] | Time measurement while push-button switch remains
depressed. The counter status provides the time in 10
ms intervals, where the push-button switch remains
depressed; 0= push-button switch is not depressed.

display_button_right | INT16[] | See above, like the left push-button switch

cnt_resetted BOOL16[] | Is set to 1 if the last counter reset is successful.

motor_pos_reached BOOL16[1 | Flags for controlling the motor; for each motor, it
provides notification if the target was reached according
to the specifications (Flag !=0).

MSC Vertriebs GmbH Page 57 of 62

Programming the ROBO TX Controller

Part 2: Windows Library "ftMscLib"

9.7 TA_OUTPUT structure

The content of the TA_OUTPUT structure is transferred from the library to the ROBO TX
Controller with each cyclical comparison and updates the pre-defined values at the

controller outputs.

// Output structure, 44 bytes

typedef struct

{
UINT16
UINT8
INT16
UINT16
UINT16

} TA_OUTPUT;

cnt_reset_cmd_id[N_CNT];
master[N_MOTOR];
duty[N_PWM_CHAN];
distance[N_MOTOR];
motor_ex_cmd_id[N_MOTOR];

Variable

Data
type

Meaning

cnt_reset_cmd_id

UINT16[]

Requests a counter reset. Must be increased by 1
each time if a reset is required.

master

UINTS[]

In the case of active motor control, the ID is
determined for the slave motor from the master
motor. The master ID in this case is the motor index
(0to3) + 1.

Example: Synchronized motor control with motor 1
(master, index= 0) and motor 3 (slave, index= 2).
Contents: master[2] = 1

duty

INT16[]

Current duty values for the motor outputs; if the
motor is actively switched on (motor variable from
TA_CONFIG structure is set to TRUE), each in pairs,
the difference of both values provides the real duty
value corresponding to the direction of rotation (CW,
CCcw)

duty[0] => M1-, duty[1] => M1+

duty[2] => M2-, duty[3] => M2+ etc.

In PWM mode (digital output), the outputs can be
operated independently of each other.

duty[0] => O1

duty[1] => 02

duty[2] => O3 etc.

distance

UINT16[]

Counter value The value is the position at which the
motor is to stop during active motor control. Motor
control is activated only once the counter value is !=
0

motor_ex _cmd_id

UINT16[]

Must always be increased by 1 if the settings for the
active motor control (duty and/or distance) changed.

MSC Vertriebs GmbH

Page 58 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

9.8 TA_DISPLAY structure

The TA_DISPLAY.DISPLAY_MSG structure is used to display generated text messages from
an application on the ROBO TX Controller display. The output text remains visible until
either the text field is initialized with 0 or the text is deleted by pressing one of the two
push-button switches on the controller.

// Display structure, 108 bytes
typedef struct

DISPLAY_MSG display_msg;
DISPLAY_FRAME display_frame;
} TA _DISPLAY;

// Display frame, 8 bytes
// Used to refresh boards display with a bitmap image frame
typedef struct
{
unsigned char * frame; // contents of a frame as a 128x64 pixels bitmap
UINT16 id; // should be increased by 1 each time a new
// display frame is to be shown

BOOL16 is_pgm_master_of _display;

// ++ 1f program wants to have control over display,
// i.e. image frame is displayed over firmware

// menus;

// —-- if program wants to return control over

// display to the firmware menus

} DISPLAY_FRAME;

// Display message, 128 bytes.
// Used to show pop-up message box on the boards display
typedef struct

UINT8 id;
char text[DISPL_MSG_LEN_MAX + 1];
} DISPLAY_MSG;
Variable Data type | Meaning
id UINT8 Message ID. Must be increased by 1 each time if a new
message window is to be displayed.
text char[] Character field for receiving text (ASCII) that is shown on
the ROBO TX Controller display. Maximum text length is
DISPL_MSG_LEN_MAX=98

MSC Vertriebs GmbH Page 59 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

9.9 TA_STATUS structure

Particular transfer area status information can be read.

// Status of transfer area (valid only for ftMscLib), 4 bytes
typedef struct

UINT8 status;
UINT8 iostatus;
UINT16 ComErr;

} TA_STATUS;

Variable Data Meaning
type
status UINTS8 Status of transfer area:

0 - transfer area is not active
1 - transfer area is active
2 - transfer area is being synchronized

iostatus UINT8 Status of I/O communication:
0 - remote I/O request was sent
1 - configuration data sent

ComErr INT16 System error message in the case of a COM port
error

MSC Vertriebs GmbH Page 60 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

9.10 TA_CHANGE structure

Structure serves to provide notification of changes to the universal and counter inputs. If
any change has been detected, the variable ChangeStatus is set to TRUE; if it is FALSE,
there are no current changes. This allows an application to display the existing values in an
optimal way.

// Change structure (valid only for ftMscLib), 8 bytes
typedef struct

{
char reserved_1[2];
UINT8 ChangeStatus;
UINT8 ChangeUni ;
UINT8 ChangeCntlin;
UINT8 ChangeCounter;
char reserved_2[2];

} TA_CHANGE;

Variable Data type Meaning

ChangeStatus UINT8 Global display of a change for universal inputs, counter
inputs or time variables.

TRUE - a change is present

FALSE - the relevant values have not been changed in the
transfer area

ChangeUni UINT8 Each set bit within the UINT8 variables indicates that a
change in the existing value has occurred for the
representative universal input.

Bit 0 - universal input I1

Bit 1 - universal input 12, etc.

ChangeCntlin UINT8 Flags for displaying a configuration change to the counter
inputs

Bit0 - counter input 1

Bit 1 - counter input 2, etc.

ChangeCounter UINT8 Flags for displaying a change in the counter status
Bit0 - counter 0
Bit 1 - counter 2, etc.

9.11 TA_TIMER structure

Timer variables are managed in the new transfer area as they were in the old transfer
area. These have the same purpose as in the previous version and are used for certain
timeout variables. The timer variables are updated in an event-controlled manner via a
multimedia timer.

// 16-bit timers, 12 bytes
typedef struct

{
UINT16 Timerlms;
UINT16 TimerlOms;
UINT16 TimerlOOms;
UINT16 Timerls;
UINT16 TimerlOs;
UINT16 Timerlmin;

} TA_TIMER;

MSC Vertriebs GmbH Page 61 of 62

Programming the ROBO TX Controller Part 2: Windows Library "ftMscLib"

10 Document change history

Version | Date Author Other comments

1.4.24 9/21/2009 Peter Classen First complete documented version
1.5.08 3/17/2011 Peter Duchemin Added Bluetooth message API functions
1.5.11 4/24/2012 Peter Duchemin Added I°C API functions

MSC Vertriebs GmbH Page 62 of 62

